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(€,) for Mg,Pb. It is to be hoped that the publishing
of this band structure plus the resolution of the
crystal preparation problem® will stimulate the
measurement of optical properties of Mg,Pb like
the reflectivity'® and modulated reflection'® work

P. VAN DYKE AND F. HERMAN 2

that has been done on the other Mg,X compounds.

The authors are grateful to Dr. G.A. Stringer
and Professor R.J. Higgins for communicating
their experimental results in advance of publica-
tion.
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The usual procedure of reducing transition-radiation data by simply subtracting brems-
strahlung yield from the total yield ignores the coherent interference effect between transi-
tion radiation and bremsstrahlung. Assuming single scattering, we have analyzed the simul-
taneous generation of transition radiation and bremsstrahlung of a charged particle normally
incident on a thin slab. The results obtained here not only should be useful for reducing ex-
perimental data on transition radiation, but also should provide a new independent means to

deduce the mean-square angle for single scattering.

I. INTRODUCTION

When a charged particle passes through a thin
dielectric slab without deflection along the direc-
tion of the normal to the plane surfaces of the slab,
transition radiation with its characteristic polar-

ization will be emitted.! Transition radiation from
a normally incident charged particle is always
polarized in the plane of emission determined by
the direction of observation and the normal to the
slab. However, in practice charged particles

may suffer scattering in the slab, in which case
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bremsstrahlung is also generated. The usual pro-
cedure of reducing transition-radiation data by
simply subtracting bremsstrahlung yield from the
total yield ignores the coherent interference effect
between transition radiation and bremsstrahlung,
The simultaneous generation of transition radia-
tion and bremsstrahlung from charged particles
incident on a semiinfinite medium was calculated,
taking into account multiple scattering of charged
particles inside the semiinfinite medium,?'® In
many practical cases very thin foils are used, for
which situation a single-scattering theory may be
appropriate.

Assuming single scattering, we have calculated
the simultaneous generation of transition radiation
and bremsstrahlung from a charged particle nor-
mally incident on a thin parallel plane dielectric
slab containing randomly distributed scattering
centers, First, the transition radiation and
bremsstrahlung generated inaparticular trajectory
of a charged particle, which is scattered through
an angle © at a depth ¢ inside the slab, is calcu-
lated and then averaged over the scattering angle
© and the depth {. For fast-charged particles
used in transition-radiation experiments small
angle scattering may be assumed and consistent
expansions in © up to and including 6% are made
in the calculation, The results obtained here
should be useful not only for reducing experimental
data, new or old, on transition radiation, but also
should provide a new independent means to deduce
the mean-square angle (6%) for single scattering of
energetic-charged particles in a given material,

In Sec. II the current density corresponding to a
particular trajectory of a charged particle scat-
tered through an angle © at a depth ¢ is given and °
the inhomogeneous solution of the Hertz vector
due to this current density is calculated. The
coefficients of the homogeneous solutions of the
Hertz vectors, which correspond to transition
radiation, are determined in Sec, III from the
boundary conditions at the plane boundaries of the
slab. In Sec. IV applying the saddle-point method
in the far radiation zone, the Poynting flux is
evaluated for both polarizations parallel (II) and
perpendicular (L) to the plane of emission, and
for both forward and backward directions, The
results of the averaging over the scattering angle
© and the scattering depth ¢ are also presented.

II. CURRENT DENSITY AND INHOMOGENEOUS SOLUTION

Consider a uniformly moving charged particle
normally incident on a thin slab of thickness d
(Fig. 1) and assume that the particle undergoes
single scattering ata depth z = ¢{ by deviating through
a small angle © from the original direction with-
out changing the magnitude of its velocity v. The

€=1 €=€(w) €=1

z=0 z=d

FIG. 1. Geometry for single scattering of the elec-
tron at the depth ¢ inside the thin foil which has plane
surfaces parallel to the xy plane and extends from z
=0 to z=d.

particle carries a charge Ze and the original
direction of motion is taken as the z axis. The two
plane surfaces of the slab, situated at z=0 and
z=d, divide space into regions I, II, and III. In
the empty spaces I and II the dielectric constant
is equal to 1, and inside the slab II the frequency-
dependent complex dielectric constant is denoted
by €(w). If the charged particle emerges with
velocity parallel with xz plane, then the y com-
ponents of the current and the Hertz vector are
both zero and will not appear in the following cal-
culation, The remaining components of the cur-
rent density j(F, ¢) are given by

{;x} = {S}Zevb(x)é(v)é(z -ot), for z<¢ (la)

and

{;x} - { . _eiez} Zevd(x - (vt - £)O)

X5(y)8(z — vt + (vt - £)567), for z=¢.
(1b)

Here we have assumed that the particle crosses
the front surface z=0 of the slab at time =0, and
5(x) denotes Dirac’s & function, Terms of higher
order than 6% are neglected.

The Fourier transforms of Egs. (1)

3(kx,ky’,w]z)=1/(2-n)3/2 f‘:: dx j':: dy ]t: dt
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% JF, texp[- ilxk, + yky— wi)] ,

can be found easily:

Jx — .0 _Ze_emz: for z<¢ s (23.)
I ) 1§ (2m)*/?

J o )%

where the abreviations 7=w/v, £=-k,0+(37)6?,
and y=7+£ were used.

Starting from the well-known relation between
the vector potential A(F, ¢) of the electromagnetic
field and the current density j(¥, ¢)

we may introduce the Hertz vector (7, ¢) via

€ oIl

A( —c ot

and its Fourier transform
ik, by 0] 2)=1/@0P2 [ dx [*=dy [*~adt
x T(F, texp| =i (xky +yk, - wit)].

Then we obtain the following equation relating the
Fourier transforms of the Hertz vector and the
current density:

d
(d_E +kz> fi(e,, ky,wlz)- — J(kx, ky,w|z) , (3)

where k2=€(w)w?/c? - k2~ kﬁ. We shall use the

abbreviations k?=k2+ 2 and

k,= + (€w2/cz_ K2)1/2 .
The inhomogeneous solution to (3) is given by

if(z)= (1/2ik,)[e 'k”zj Bl (PP 7Y
+e'”’”’jz“’ *e 3(2"dz'] , (4)

if Im(k,)>0. We shall denote the inhomogeneous
solutions in the three regions I, II, and III (Fig. 1)
by m,(2), T(2), and 73(z), respectively. The
derivatives of these inhomogeneous solutions with
respect to z will be designated by adding a prime
to the respective solutions 7/(z), 75(z), and 7(2).
The value of k= (€w?/c? - k?)!/% depends on €(w)
and because of its frequent appearance below, we
shall use the notations

q= k‘= (wZ/CZ - KZ)I/Z s
in regions I and III with =1,
q'=k,= (ew?/c? —k2)\/2

in region II with €(w)#1. We need the following
values of the inhomogeneous solutions and their
derivatives at z=0 and z=d:

ﬁl(o)=<(1)>f, %9')=<(1))f &
0L, B ()L 4,

n@=(. 8 )& R@_( e \gy
"z(d)_<1-§ez)e’ iq '(1—%9’4 €q’

. e Tia(d) e y

"s(d)'<1—%ez>g’ iq (1-%92>gq ’
where the following abbreviations were used:

flor f')= 1

g*lor ¢*)-n ’
gind pitld-0
e n
o —pzy——% , and A=—
glor g')= 2(orq)7 q

In Egs. (5) the common factor (Ze/(27)*/2)(4n/iw)
has been omitted and will be restored in Sec. IV,
Before we can use the inhomogeneous solutions
(5) as input data to determine the amplitudes of the
free field [homogeneous solutions of Eq. (3)], these
solutions must first be decomposed into terms
of orders 1, ©, and ©%, This involves a rather
complicated algebra and results in lengthy inter-
mediate expressions at this stage. After averaging
over © and ¢, these expressions can be somewhat
simplified; we shall present only the final results
in Sec. IV,

III. BOUNDARY CONDITIONS AND DETERMINATION OF
AMPLITUDES OF FREE FIELDS

The total Hertz vectors m regxons I, II, and III
will be represented by IIl, IIz, and IIa, respectively.
Fach of these Hertz vectors is the sum of a bound
field [inhomogeneous solution of Eq. (3)] and a
free field [homogeneous solution of Eq. (3)]. The
inhomogeneous part was already calculated in
Secs. I and II and we have the following total Hertz
vectors in the three regions:

,,(z)=Ae *+ 1,(2) ,

m,,(z)= Pt m(z) ;

I,,(2)=Ce'*+De "%y 1, (2) ,

(6)

0,,(z)= Ee'%+ Fe %4 1,,(2) ;
,,(2)=Ge'®+ 7y, (2) ,
[,(2)=He' + mg,(2) .

The signs + in the exponent ¢!“%-“?) ywere chosen
according to the direction of propagation of the
free waves. The coefficients (4, B) and (G, H) will
be determined from the boundary conditions which



require the continuity of the tangential components
of both the total electric E and magnetic fields H
at the interfaces z2=0 and z=d. The boundary
conditions

€ll,=€'Tl, and (411, /dz)e = (11, /dz)¢’

at 2=0 and z=d yield
A+7,(0)=€[C+ D+ myy(0)] ,
~igA +11,(0) = €[iq’C ~ iq'D+ 5,(0)] ;
e[Cet®+ De™t® + my(d)] = Ge' ¥+ 1y, (d) @)
€liqg'Ce'® ~ig'De™ * + 1} (d)] = igGe'®+ ), (d) .

Here we introduced the abbreviation a=¢’'d. Solv-
ing the above equations, we obtain

A=[(Up -0 p")+ (U= U/ (+n') , (8a)
Ge'=[ = U+ U{)= Upp+ Uy "))/ (u+p’),  (80)

in which p =cosa - i6 sina, ' = cosa - (i/8) sina,
6=4q'/q, and

U, . €Ty, (0) - 1y, (0)
Ul' [G”z'x (0) - 7Tl'x (0)]/2(]
and (9)
U, _ M3y d) - €Ty, )
U, (75, (d) — €myy (d))/ig

From the other set of boundary conditions

’ '
€H,=€'H: and d_nx ﬂz___irlx ﬂ!

dx dz dx dz
at z=0 and z=d, we have
B+17,,(0)=€[E+ F+m,,0)] ,
- igB+1,(0)+ (d,, /dx)| ,.o=iq' (E = F)
+15,(0)+dly, /dx| 4y ; (10)

€[Eet®+ Fe ' + m,,(d)] = He'" + my,(d)
iq'Ee'® = iq' Fe® + my,(d) + (A1l /dx)| 4eq

=jqHe "%+ ﬂ;z(d)+ (AN, /dx)| peq +

It should be noted that in the above equations the
derivatives with respect to z are denoted by
primes, while the terms with the derivatives with
respect to x still involve the total fields, which
include both bound and free fields, Solving the
above equations, we get

B=[(V,p=V{v")+ (V- V)l /w+v') , (11a)
He'= = [(Vy+ V{)+ (Vo + V30))/(w+0") , (11D)

in which v =cosa - i(5/€) sina and v’ = cosa - i(e/
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6) sina, The quantities V;, V,, V,, and V, are
defined as

Vi €75, (0) - 7, (0) °
vi) \lQ=me® il g, o)
/ lq q €
(12)
V, 3¢(d) = €Ty, @) 0
’ = ﬂ'z(d)— ﬂ’z(d) * kx 1
vi) \ B e (-t

Here we should note that I1,,(0) and I1,,(d) repre-
sent the total sum of the x components of free

and bound fields which were determined from Egs.
(8) and (9).

By substituting the inhomogeneous solutions of
various orders obtained in Sec. II into Eqs. (8),
(9), (11), and (12), we obtain the corresponding
amplitudes of the free fields:

(B G)-G)Ge () oo
EY (-G (3)or (3)er - o

Here we multiplied the left-hand sides of both equa-
tions by (w/c)? so that the quantities A;, B;, G;,
and H;, which will be used in the final formulas,
become dimensionless, We shall give explicit
expressions for these quantities after averaging
over all possible configurations in Sec, IV. Here
we only note that Ay=G,=0 and that from B,, H,,
A,, and G, one can factor out 2,. These observa-
tions will be useful below.

IV. FORWARD AND BACKWARD YIELDS

In order to find the Poynting flux at large dis-
tances we apply the saddle-point method to the
Hertz vector:

ce oyl e fes o fee  Ze 47 (G
H(I‘, t)—WJ’- dka dk,,j’ dw _'372(2‘”) @ (H)
xexpli(xk,+ vk, + 29~ wt)] , (14)

and obtain:for large positive values of z

- Ze cosf [+ G ei(kr-wt)
H(r’t)__—_—-nc [_w dw (H) p” ,

where T= (v sinf cosg, 7 sinf sing, » cosf) and
k=1k|. Furthermore, in the expressions for G
and H one puts g=(w/c) cosd, ¢’ =(w/c)(e - sin®0)"?,
and &, = (w/c) sind cosg. In (14) we have restored
the factor [Ze/(27)*/?]4n/iw which has been omitted
following Egs. (5). Since E = (w?/c?)ii, one gets ,
in polar coordinates,

E¢=H,=—-(Ze cose/ﬂc)f_:o‘”dw(w/c)2
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X (e*r-%t) /4)(G cosé cosp—H sind) ,

oo . 2 ilkr-wt)
sz_Hg:_Z_e_CE_SQ do (2) E—— (-G sing) .
mc - c 7

The Poynting flux of photons polarized in the plane
of emission and emitted in the forward hemisphere

is given by

S, =7107; ijeH,‘, A2 aQ
2 o 4
et [, ()
mc 0 c

2
XIG cosf cosp— H sind|

Finally we obtain for the number of photons emitted
per unit frequency interval at frequency w and per
unit solid angle in the direction of §
@N, /dwdQ=T(w/c)*| G cosd cosp - H sind|?, (15)
with I'= Z%a cos?9/m%w and a=e?/lic. Similarly
we get

dN, /dwdQ=T(w/c)*|G|? sinep . (16)

The corresponding formulas in the backward

hemisphere are given by

d®N, /dwdQ=T(w/c)*| A|cosb |cos ¢ + B sind 2,

(17)
d®N, /dwdQ=T(w/c)t| A|? sin’ep . (18)

Equations (15)-(18) must be averaged over © and
. Substituting (13b) into (15) and noting the ob-
servations made there on G, and H;, we get

(w/c)*|G cosé cosg— H sing |?
= | (G,6+ G, sinb cosp O?) cosb cosy
— (Hy+H, sind cos@©+H,0%) sing|? .
Expanding the absolute square and taking averages
over ¢ and ©, the above expression becomes
| Hy| ? sin®6 + [ (Hy HY + HH,) sin®0
+ 3 (H,GF+ HYG,) sin®8 cosbh

+ 4| G, cosb - H, sin®0|2](e?) .

It should be noted that Hy, and G; do not contain %,
and that H; and G,, as already noted above, con-
tain 2, only as an over-all factor which was ex-
plicitly taken out in the above averaging over ¢.
But H, still contains %2 and one has to substitute
the value 3 for cos®e contained in H, through %2,
Similar averaging over ¢ and © can be made

for Eqs. (16)-(18) and the results of these averag-
ings are included in the final results given below.
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For the averaging over the scattering depth ¢,
we first note that B,, H;,, A;, and G, do not contain
¢ while all other amplitudes depend on ¢. In the
absence of scattering, |H,|? and |B,|? contribute
to the generation of transition radiation in the
forward and backward hemispheres, respectively.
Assuming uniform scattering probability per unit
length inside the slab and taking the average over
¢ from 0 to d, we obtain the final results.

Foward yield:

d?N, /dwd = T(| Hy|? V2sin%0 + M (0%) ,
with
M= (H(H})+ H¥H,))7? sin0
+ 3 (H(GF)+ HXG,)) 7 sin®6 cosé
+3|61|? E2cos? + 1(|H,|?)D? sin'e
- 3 (G(H) + GKH))L 7 cosb sin®g
@N, /dwd=T % | G,|*L%e? ;
Backward yield:
d®N, /dwd=T(| By|? V2sin%0 + M'(6%)) ,
with
M' = (B(BS)+ BYB,))v? sin*g
+ 3 (B(AS)+ BfA,))n 7 sin®f cosd
+3]A,|? #% cos®0 + £(| By|?)7? sin'e
+3(A(Bf)+AXB))L T cosh sin®e
d®N, /dwdQ =T 1| A, |2 1%(6?)

In these final equations we have taken out the com-
mon factor k= lu+u’l™ out of A; and G; and,
similarly, 7= |v+v'|™ out of B; and H;. The quan-
tities which contain ¢ and were averaged over ¢
are indicated by angular brackets. Finally we list
the explicit expressions for all amplitudes after
being averaged over ¢, ©, and ¢:

By=(Pyw—-Py')Py-P._ ,
Hy=(P,+ P,)P,- P, ;
A==(1=-2)P, ,
Gy=={u+p'a)pP, ;

1-1/e P
b:(AIV—Gl)—ESEE———:ﬁ+P3—P4 s

1-1/e P
h:(—A1+GIV')—(-:0?+—elﬁv'+P3v+P4u' ;

(Bp=b+ypP. ,

(Hp)=h+yP, ;
(|B,|H=]|b|2+% |9P |2+ p(b*P_ - bP¥),
([#[%=[n|*+% [9P,[*+y(*P, - hPY) ;
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(A)=(1-4)(Py+yP,) - P,BA
<Gz>=(N+IJ-'A)(P3+4)P1)—P1{3A/J.' ;

(8= (v -6 (1)
+f<le>‘f,<l£>+ %(Pl—PS) )
(Hy) = (= (Ag) + (G )(1 -—)—Si’fe—

sin%
2 cosf

2 cosf

+f{v+f v’ + 3 (P + Py')

f=1/(cos?®6- %) f=1/(elw)-
P,=exp[-ilw/c)d/B)) , Pi=f'-f ,
Po=(f/e=Da P.=P,-P,

)

sin?0 - B2) |

P,=Pv+Py', P,=2(f"%-f2)/8
f'2 > sin%9
P,=2— -~ P.=—
4 2( 5 (P3+¢P1)€ cosf ’

v=ilw/c) 3d ,

6= (e — sin®0)'2/cosh ,

A=1/Bcosh ,

z/) sin®9

2 (il
(o) = f< sin%g 3 +%>+—2f—~§¥1—q+§¢+§zp2’
=y (1 sin's LAl L) ATy gy

A detailed analysis of accurate experimental
data in light of the present results will be given in
the subsequent paper.
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The temperature variation of the dc Josephson current Jg(T) of Pb-Pb tunnel junctions has
been investigated both experimentally and theoretically. The cxperimental data do not agree
with the temperature dependence of the dc Josephson current derived by Ambegaokar and

Baratoff for the case of two weak coupling superconductors.

However, detailed numerical

calculations of the temperature variation of the dc Josephson current for a Pb-Pb tunnel junc-
tion, which employ strong coupling superconductivity theory throughout, are in reasonably
good agreement with the experimental measurements.

I. INTRODUCTION e
The work to be described is a joint experimen-
tal and theoretical investigation of the temperature
variation of the dc Josephson current for a Pb-Pb
tunnel junction. The experimental work was car-
ried out by the group at Waterloo, while the theo-

retical work was performed by the group at
McMaster.
Previous experimental work on the temperature

variation of the dc Josephson current has been
interpreted as supporting the temperature depen-
dence derived by Ambegaokar and Baratoff® for
the case of two weak coupling superconductors.
For example, both Fiske? for Sn-Sn and Pb-Sn
Josephson junctions and Hauser? for Pb-Pb
Josephson junctions concluded that the tempera-
ture dependence of the dc Josephson current was
described by the Ambegaokar-Baratoff formula.
However, while Fiske’s data for an Sn-Sn Joseph-



